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Long-Pulse Soliton in a Single Mode Optical Fiber*

GuoQi  LiMingzhi  Liao Changjun  Liu Songhao
(Institute of Quantum Electronics, South Chwma Normal University, Guangzhou 510631)

Abstract It is theoretically demonstrated that a new Kkind of soliton, having the waveform of sech*(x),
can propagate in a single mode optical fiber. For the conventional fiber, its temporal width is about one
nanosecond when peak input power is about 1 Watt at the wavelength 1. 3 micron.
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1 Introduction

The term soliton refers to a special kind of wave that can propagate undistorted over long
distance. An optical soliton{!'?}is the nonlinear'pulse packet propagating in a single mode optical fiber.
It has drawn more and more attention of the scientists in the world because the optical soliton is not
only of fundamental interest but also has wide potential applications, especially in the field of optical
fiber communicationst®). According to a nonlinear Schrédinger (NLS) equation, so- called
fundamental soliton is a hyperbolic-secant pulse with its pulse temporal width being about a few
picosecond or less!®. A self-steeping term{*! has to be included in the NLS equation to explain the
asymmetry of the output puse spectrum. The NLS equation with the self-steeping term is called as the
modified NLS (MNLS) equation in some literature®~7], which also has a soliton solution proved by
Anderson et al. ), In order to deal with the MNLS equation, one usually transforms it into the
normalized perturbed NLS equation (the normalized NLS equation with the perturbed self-steeping
term) by using a dimensionless (normalized) transformationt? 5~73,

In this letter, it is demonstrated theoretically that the MNLS equation can have another soliton
solution, which is not only much different from the fundamental soliton described by the NLS
equation, but also slight different from the soliton presented by Anderson. Instead of the old
transformation mentioned above, a new one is introduces to reduce the MNLS equation to normalized
MNLS (NMNLS) equation, in which no perturbed term is contained. “The mathematical method used
here is the newly-presented inverse scattering method'®’ to integrate the NMNLS equation. As a result,
one may surprisingly find that this new kind of soliton is in the nanosecond region which means an
electrically modulated emitter may excite the soliton propagation in the optical fiber.

2 Result
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The MNLS equation ist®" =%

‘;j z'f;‘ﬁp(mpmma (|42 4) = 0, I

where A is slowly varying packet function, T == t — § z is the movement coordinate of the packet, £
= nowe/c , and the coefficients y and a are defined by
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where A . is known as the effective core area of the fiber(*'*], n, is the nonlinear-index coefficient.

}J‘:

Using the transformation

. |ﬁ!r| . T _ f VTU 1
é - oT2 <y T = Tl}. q9 = 2[ |ﬁ” |w0) A, (2)
in the anomalous-dispersion regime ( g” < 0) , Eq. (1) is reduced to the (dimensionless) NMNLS

equation’®’
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where p = wTy/4 . Like the old transformation, the arbitrary time scale T, in Eq. (2) allows a pulse

&F ]
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of standard duration in the dimensionless variable 7 to correspond to a pulse of any desired duration in
time T .

Recently , Chen‘®’ has presented a new method to solve Eq. (3) analytically. In her method, Eq.
(3) is solved by an inverse scattering method out of a new Lax pair, and its soliton solution also
corresponds to the discrete spectral parameter like that by Zakharov and Shabat!'®), By this method,
the N -soliton solution of the NMNLS Eq. (3) (corresponding to the case of reflectionless) can be
expressed as'®’

Q('fy 7) =— 32F1(§! 7) Fz(éa 7). (4)

In this solutlon above, F, and F, are respectively *
E Co & ynexp [— (&0 — p)7], 6]
=1+ ; Coéapaexp Lils — p)7], (6)

where {,(n =1, 2, +»+, N) are the discrete spectral parameters (also called as discrete eigenvalues) of
the scattering equation of the Lax pair for Eq. (3), #:. and ¥, are the values of Jost solutions of the
scattering equation at £ = £, , which can be found from the system of 2 N linear algebraic equations in
2 Nunknowns (m =1, 2, *+, N)

pinexp (s —p)r]=1—¢0 3 Cupua e(xgp E(g: )—gzp)rj’ (78)
Ppimexp [— i(ln — p)7] = én i Cy yphexp [— (4 — 9)7] 7o

a=] (é' - éﬂ!) é
where the asterisk denotes complex conjugate. In the equations above, C,is the discrete scattering date
which can be expressed as

C, = Cexp [i 4(& — p)2E],

* the symbol in the right hand side of the two formula in Eq. (51) of Ref. [9] should be “+”, instead of “—”. See, Chen,
private communication; also see, Chen, “Explicit N-Soliton Solution of the Modified Nonlinear Schrodinger Equation by Means
of the Inverse Scattering Transformation”, ( Commun. Theor. Phys., Vol. 15, April 1991, PP. 421~426.
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where Cy, is a constant determined by the initial condition.

When N =1, Eq. (7) reduces to the system of two linear equations of two unknowns, and can
be solved easily. Substituting the solution of Eq. (7) for N =1 into Eq. (4), the single soliton
solution of Eq. (3) is found to be

g = 2 v2nsech [49(r — 4p¢ — D) ] exp (i¢), (8)

where phase factor ¢ is
¢ = 2pt — 4(p* — 7*)& + 3u, ®

Q=1In[|Cy|?/(45*)]/4n, and 4 = arctan {[ |Co |2/ (49°)] exp [— 49(x — 4p£)]} . In order to
obtain Eq. (8), we have supposed that the spectral parameter is located in the imaginary axis so that &,
=17.

The solution (8) tells us that | ¢ | keeps its initial shape in propagation along the fiber with a
delay, which has been found earlier®). The delay per unit length is d7/d& = 4p.

In particular, with & =0, the solution (8) is simplified to

q= 2 /29 sech [4dn(7 — 4p&) | exp (i¢). (10)
The phase (9) does not change in form, but the factor x in it is reduced to
u = arctan { exp [— dn(z — 4p8) ]}. (11)
Letting £ = 0 in the Eq. (10) gives the input condition at the fiber input terminal
go = 2 /2 sech (477) exp (igo), (12)

where ¢, is obtained by letting £ = 0 in the expression of ¢ (Egs. (9) and (11)). To verify our
calculation, we have numerically simulated the evolution of Eq. (3) under the initial condition (12)
for different values of 7 by means of the split-step Fourier method!?). The result concurs with Eq.
(10) completely.

3 Discussion

Now, We can come back to the real world to find out the input power, the full width at half-
intensity maximum (FWHM), and the other real quantities necessary for the propagation of the
soliton solution (10). Without loss of generality, letting 7 =1/2, Eq. (12) gives

|Qc|l = 2 «/Sm

For this standard pulse, 7 pwam=1. 317, and | ¢ o|mx=2. Form the transformation (2), therefore,
we have | .
32| D| A
T rwam ’
where P, is the peak of the input power (its unit is in W), A is the wavelength (in um) of the carrier
wave, T rwum is the FWHM of the soliton pulse (in ps) equating 1. 317 T ¢, D is dispersion parameter
(D =— 2mcp" /4%, its unit is in ps/km/nm), the unit of 4 ,;sis um?, and n ,=3. 2 X 10~ cm?/W.
For the conventional step-index single mode fiber at A =1. 3 um, D &2 ps/km/nm, A =50 um?, so
from Eq. (13) we have that T pwum= 1. 1 ns when P, =1 W. But for the fundamental soliton
described by NLS equation, formulal?

Po=2.1 X 107" (13)

Po = 7.89 X 10~ 2] A«

o Tewme '
gives that T ewum=>1. 34 ps if all of other parameters do not change, where the unit of ¢ is km/s. It
can also be obtained from Eq. (2) that the delay quantity per propagation length



96 ¥ ¥ ¥ it 15 %

%r=500 D,

where the unit of delay per length is in ps/km, Ais in um, and D in ps/km/nm. It turns outd7/dz =
1. 3 ns if parameter values above are chosen, which means that the pulse will delay one pulse width
after it propagates about one Kilometer.

" There are some differences between the soliton presented here and the fundamental soliton out of
NLS equation. The most pronounced feature is that the former temporal width is much larger than the
latter one. This is because the transformation coefficient in Eq. (2¢), 2[ yTo/(|B" | we) ]*, is much
smaller than that'?!in the old transformation which is { y/|B” |)%T, . Second, the former width is
inversely proportional to the square-root of its amplitude, which can be get from Eq. (2¢) and (10),
but the latter width is inversely proportional to the amplitude'>’. Third, the former has the form of the
square-root of hyperbolic-secant, while the latter is the hyperbolic-secant pulset?). This soliton is also
slight different from the soliton presented by Anderson‘®lin their expressions.

4 Conclusion

In conclusion, we have theoretically demonstrated that the NLS equation with the self-steeping
term can support the propagation of a new kind of optical siliton. The intensity of this soliton has the
form of sech(x), and its pulse width is about one nanosecond when the input peak power is 1 W at 4
=1. 3 um for conventional singlte mode fiber. This result is not only the fundamental interests to study
the contribution of the self-steeping term to the NLS equation, but also practical imbortant. As well
known, the soliton laser with photo-inject mode- lock!!") and CPM laser('?) can excite soliton in
picosecond or sub-picosecond region. Our result shows that an electrically modulated emitter may also
easily excite soliton propagation in the single mode optical fiber. It seems the this new soliton can not
be used to the oi:tical fiber communications because of its long-pulse feature, but we can be sure its
new application will soon be suggested after it is experimentally demonsttated.
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